






# **SB1100 SCHOTTKY RECTIFIER**



### **Features**

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters,
   Free Wheeling, and Polarity Protection Applications
- This is a Pb Free Device
- All SMC parts are traceable to the wafer lot
- Additional testing can be offered upon request

## **Circuit Diagram**



## **Applications**

- · Switching power supply
- Converters
- Free-Wheeling diodes
- · Reverse battery protection
- Disk drives
- Battery charging

#### **Maximum Ratings:**

| Characteristics                                                                  | Symbol                                                 | Condition                                                    | Max. | Units |
|----------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|------|-------|
| Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | V <sub>RRM</sub><br>V <sub>RWM</sub><br>V <sub>R</sub> | -                                                            | 100  | V     |
| Average Rectified Forward Current                                                | I <sub>F (AV)</sub>                                    | 50% duty cycle @T <sub>C</sub> =105°C, rectangular wave form | 1    | Α     |
| Peak One Cycle Non-Repetitive Surge Current                                      | I <sub>FSM</sub>                                       | 8.3 ms, half Sine pulse, T <sub>C</sub> =25°C                | 40   | Α     |

### **Electrical Characteristics:**

| Characteristics        | Symbol          | Condition                                                              | Тур.   | Max.   | Units |
|------------------------|-----------------|------------------------------------------------------------------------|--------|--------|-------|
| Forward Voltage Drop*  | V <sub>F1</sub> | @ 1A, Pulse, T <sub>J</sub> = 25 °C                                    |        | 0.85   | V     |
|                        | V <sub>F2</sub> | @ 1A, Pulse, T <sub>J</sub> = 125 °C                                   | 0.65   | 0.75   | V     |
| Reverse Current*       | I <sub>R1</sub> | @V <sub>R</sub> = Rated V <sub>R</sub> , Pulse, T <sub>J</sub> = 25 °C | 0.0003 | 1.0    | mA    |
|                        | I <sub>R2</sub> | $@V_R = Rated V_R, Pulse, T_J = 125 °C$                                | 0.2    | 15     | mA    |
| Junction Capacitance   | Ст              | $@V_R = 5V, T_C = 25 \text{ °C}$<br>$f_{SIG} = 1MHz$                   | 40     | 80     | pF    |
| Voltage Rate of Change | dv/dt           | -                                                                      | -      | 10,000 | V/us  |

<sup>\*</sup> Pulse width < 300 µs, duty cycle < 2%







# **Thermal-Mechanical Specifications:**

| Characteristics                                | Symbol           | Condition    | Specification | Units |
|------------------------------------------------|------------------|--------------|---------------|-------|
| Junction Temperature                           | TJ               | -            | -55 to +150   | °C    |
| Storage Temperature                            | T <sub>stg</sub> | -            | -55 to +150   | °C    |
| Typical Thermal Resistance Junction to Ambient | $R_{	heta JA}$   | DC operation | 50            | °C/W  |
| Approximate Weight                             | wt               | -            | 0.26          | g     |

# **Ratings and Characteristics Curves**

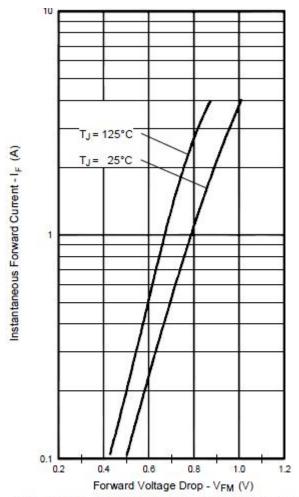



Fig. 1 Max. Forward Voltage Drop Characteristics (Per Leg)

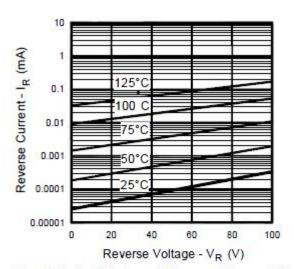



Fig. 2 Typical Values of Reverse Current Vs. Reverse Voltage (Per Leg)

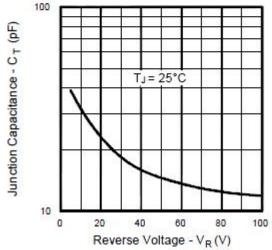
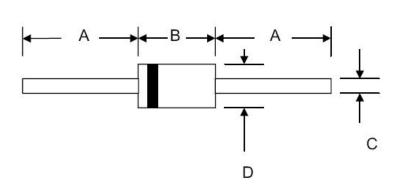



Fig. 3 Typical Junction CapacitanceVs. Reverse Voltage (Per Leg)


- China Germany Korea Singapore United States
  - http://www.smc-diodes.com sales@ smc-diodes.com •







## **Mechanical Dimensions DO-41**

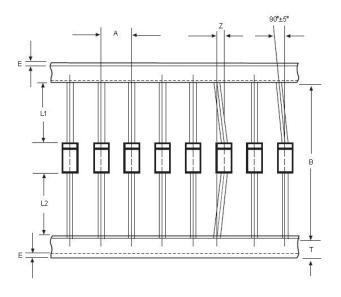


| CVMPOL | Millimeters |       | Inches |       |  |
|--------|-------------|-------|--------|-------|--|
| SYMBOL | Min.        | Max.  | Min.   | Max.  |  |
| А      | 25.4        | -     | 1.000  | -     |  |
| В      | 4.06        | 5.21  | 0.160  | 0.205 |  |
| С      | 0.71        | 0.864 | 0.028  | 0.034 |  |
| D      | 2.00        | 2.72  | 0.079  | 0.107 |  |

# **Ordering Information**

| Device   | Package        | Shipping       |
|----------|----------------|----------------|
| SB1100   | DO-41(Pb-Free) | 5000pcs / tape |
| SB1100TA | DO-41(Pb-Free) | 5000pcs / tape |

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our tape and reel packaging specification.


# **Marking Diagram**



SB1100

#### = Part Name

## **Carrier Tape Specification DO-41**



| SYMBOL  | Millimeters |      |  |  |
|---------|-------------|------|--|--|
| STWIBOL | Min.        | Max. |  |  |
| А       | 4.50        | 5.50 |  |  |
| В       | 50.9        | 53.9 |  |  |
| Z       | -           | 1.20 |  |  |
| Т       | 5.60        | 6.40 |  |  |
| E       | -           | 0.80 |  |  |
| IL1-L2I | -           | 1.0  |  |  |

- China Germany Korea Singapore United States
  - http://www.smc-diodes.com sales@ smc-diodes.com •







#### DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..